How does machine learning and artificial intelligence work?

Machine learning is the brain where all the learning takes place. The way the machine learns is similar to a human being. Humans learn from experience. The more we know, the more easily we can predict. By analogy, when we face an unknown situation, the likelihood of success is lower than the known situation. Machines are trained the same. To make an accurate prediction, the machine sees an example. When we give the machine a similar example, it can figure out the outcome. However, like a human, if its feed a previously unseen example, the machine has difficulties to predict.

The core objective of machine learning is learning and inference. First of all, the machine learns through the discovery of patterns. This discovery is made thanks to the data. One crucial part of the data scientist is to choose carefully which data to provide to the machine. The list of attributes used to solve a problem is called a feature vector. You can think of a feature vector as a subset of data that is used to tackle a problem.

The machine uses some fancy algorithms to simplify reality and transform this discovery into a model. Therefore, the learning stage is used to describe the data and summarize it into a model.

Scroll to Top